Groups with Normal Subgroups Possessing Subnormal Complements
نویسندگان
چکیده
منابع مشابه
Finite Groups Whose «-maximal Subgroups Are Subnormal
Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...
متن کاملNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملThe Nilpotency of Some Groups with All Subgroups Subnormal
Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or minG. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.
متن کاملon supersolvability of finite groups with $mathbb p$-subnormal subgroups
in this paper we find systems of subgroups of a finite group, which $bbb p$nobreakdash-hspace{0pt}subnormality guarantees supersolvability of the whole group.
متن کاملClassifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1973
ISSN: 0002-9939
DOI: 10.2307/2039098